Biomateriales compuestos para restauración ósea obtenidos mediante tecnologías basadas en el uso del campo electromagnético

Margarita Hernández-Escalona, Yaymarilis Veranes-Pantoja, Loreley Morejón-Alonso, Julio César Llópiz-Yurell, Carlos Díaz-Aguila

Texto completo:

PDF

Resumen

RESUMEN

Introducción: El panorama demográfico en el mundo está cambiando. La población mayor de 60 años es el segmento que está creciendo más rápidamente y en el que las enfermedades del tejido óseo se presentan con más frecuencia, lo que aumenta la demanda de materiales y tecnologías apropiadas para restaurar estos tejidos.

Objetivo: Analizar la información que se ha generado sobre el desarrollo de biomateriales compuestos para la reparación ósea, con énfasis en la identificación de las tecnologías emergentes basadas en el uso del campo electromagnético, sus aplicaciones y potencialidades.

Métodos: Se consultaron trabajos científicos publicados en libros, revistas, patentes y tesis. El 80 % de la documentación seleccionada pertenece al periodo 2010-2020.

Análisis e integración de la información: Los métodos identificados fueron clasificados en cinco grupos: electrodeposición química, ya sea por electrólisis, electroforesis o síntesis electroforética in situ; electroporación; electrohilado; control magnético distal y bioestimulación electromagnética de células y tejidos, directamente o por la introducción de dispositivos que convierten la energía electromagnética en energía mecánica.

Conclusiones: Estos métodos permiten la conformación de matrices celulares y acelulares compuestas y, además, dispositivos bioestimuladores con control de los parámetros de construcción y acción, de tal manera, que se logran procesos con mayor grado de reproducibilidad y a la medida de los requerimientos específicos para cada paciente.

Palabras clave: biomateriales compuestos; regeneración ósea; electrodeposición; electroporación; electrohilado; control magnético distal; partículas magnéticas; estimulación por campos electromagnéticos.

Palabras clave

biomateriales compuestos; regeneración ósea; electrodeposición; electroporación; electrohilado; control magnético distal; partículas magnéticas; estimulación por campos electromagnéticos

Referencias

Beard JR, Bloom DE. Towards a comprehensive public health response to population ageing. The Lancet. 2015;385(9968):658-61. DOI: 10.1016/S0140-6736(14)61461-6

OMS. Informe mundial sobre el envejecimiento y la salud. Ginebra: Ediciones de la Organización Mundial de la Salud (OMS), 2015. [acceso: 15/07/2021]. Disponible en: https://apps.who.int/iris/bitstream/handle/10665/186466/9789240694873_spa.pdf?sequence=1&isAllowed=y

Estadísticas CONd. Anuario Estadistico de Cuba 2019. La Habana, Cuba: Oficina Nacional de Estadísticas (ONE); 2020. [acceso: 16/07/2021]. Disponible en: http://www.onei.gob.cu/sites/default/files/aec.pdf

Boretos JW, Eden M. Contemporary biomaterials: material and host response, clinical applications, new technology and legal aspects. New Jersey, USA: Noyes Publications; 1984.

Preetha B, Sreekala M, Thomas S. Fundamental Biomaterials: Metals. Cambridge, England: Woodhead Publishing; 2018.

Zhang LC, Chen LY. A review on biomedical titanium alloys: recent progress and prospect. Advanced Engineering Materials 2019;21(4):1801215. DOI: 10.1002/adem.201801215

Guo Y, Xie K, Jiang W, Wang L, Li G, Zhao S, et al. In Vitro and in Vivo Study of 3D-Printed Porous Tantalum Scaffolds for Repairing Bone Defects. ACS Biomaterials Science & Engineering. 2019;5(2):1123-33. DOI: 10.1021/acsbiomaterials.8b01094

Joshi G, Naveen B. Comparative study of stainless steel and titanium limited contact-dynamic compression plate application in the fractures of radius and ulna. Medical Journal of Dr. D.Y. Patil Vidyapeeth. 2019;12(3):256-61. DOI: 10.4103/mjdrdypu.mjdrdypu_140_18

Aherwar A, Singh AK, Patnaik A. Cobalt based alloy: A better choice biomaterial for hip implants. Trends in Biomaterials and Artificial Organs. 2016;30:50-55. DOI: 10.13140/RG.2.1.2501.5284

Heiden M. Magnesium, Iron and Zinc Alloys, the Trifecta of Bioresorbable Orthopaedic and Vascular Implantation - A Review. Journal of Biotechnology & Biomaterials. 2015;05. DOI: 10.4172/2155-952X.1000178

Thomas S, Balakrishnan P, Sreekala MS. Fundamental Biomaterials: Ceramics. Cambridge, England: Woodhead Publishing; 2018.

Ginebra M-P, Espanol M, Maazouz Y, Bergez V, Pastorino D. Bioceramics and bone healing. EFORT Open Reviews. 2018;3:173-83. DOI: 10.1302/2058-5241.3.170056

Thomas S, Balakrishnan P, Sreekala MS. Fundamental Biomaterials: Polymers. Cambridge, England: Woodhead Publishing; 2018.

Shi C, Yuan Z, Han F, Zhu C, Li B. Polymeric biomaterials for bone regeneration. Annals of Joint. 2016;1(9). DOI: 10.21037/aoj.2016.11.02

Mulchandani N, Prasad A, Katiyar V. Resorbable Polymers in Bone Repair and Regeneration. In: Grumezescu V, Grumezescu AM, editors. Materials for Biomedical Engineering: Absorbable Polymers. Amsterdam, Netherlands: Elsevier; 2019. p. 87-125.

Ambrosio L, Ed. Biomedical Composites. Cambridge, England: Woodhead Publishing; 2017.

Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Advances. 2019;9(45):26252-62. DOI: 10.1039/C9RA05214C

Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology. 2012;30(10):546-54. DOI: 10.1016/j.tibtech.2012.07.005

Consoli D, D’Este P, Perruchas F. Biomaterials Stakeholders and Research in Europe. ESB Web site: The European Society for Biomaterials (ESB) 2017. [acceso: 18/07/2021]. Disponible en: https://www.esbiomaterials.eu/Cms/Content/12

Zulueta-Cuesta JC. Gestión del conocimiento durante la transferencia tecnológica: universidad-empresa. Revista Avanzada Cientifica. 2010 [acceso: 17/07/2021]; 13(3):1-11. Disponible en: https://dialnet.unirioja.es/descarga/articulo/5074389.pdf

Hernández-Escalona M, Veranes-Pantoja Y, Morejón-Alonso L, Llópiz-Yurell JC. Tendencias en el desarrollo de matrices compuestas para reparación ósea. Convención Internacional de Salud, Cuba Salud 2012. La Habana, Cuba: Ministerio de Salud Pública de Cuba; 2012. p. 2595-604. [acceso: 17/07/2021]. Disponible en: http://www.convencionsalud2012.sld.cu/index.php/convencionsalud/2012/paper/view/1857/658

Feynman RP, Leighton RB, Sands M. The Feynman Lectures on Physics, Vol. II: The New Millennium Edition: Mainly Electromagnetism and Matter. New York: Basic Books; 2011.

Landau LD, Lifshitz EM. Curso de Física Teórica, Vol.2: Teoría clásica de campos. Barcelona, España: Editorial Reverte; 1992.

Barnes FS, Greenebaum B. Biological and medical aspects of electromagnetic fields. Boca Raton, FL, UEA: CRC press; 2018.

Lin JC. Advances in electromagnetic fields in living systems. New York: Springer; 1994.

Lin JC. Electromagnetic fields in biological systems. Boca Raton, FL, UEA: CRC press; 2011.

Moore B, Asadi E, Lewis G. Deposition Methods for Microstructured and Nanostructured Coatings on Metallic Bone Implants: A Review. Advances in Materials Science and Engineering. 2017;2017:9. DOI: 10.1155/2017/5812907

Gurrappa I, Binder L. Electrodeposition of nanostructured coatings and their characterization—A review. Science and Technology of Advanced Materials. 2008;9(4). DOI: 10.1088/1468-6996//9/4/043001

Walsh FC, Perry B. Fundamental Definitions and Concepts. Transactions of the IMF. 1992;70(2):87-89. DOI: 10.1080/00202967.1992.11870949

Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science. 2007;52(1):1-61. DOI: 10.1016/j.pmatsci.2006.07.001

Blanda G, Brucato V, Pavia FC, Greco S, Piazza S, Sunseri C, et al. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel. Materials Science and Engineering: C. 2016;64:93-101. DOI: 10.1016/j.msec.2016.03.088

Horynová M, Remešová M, Klakurková L, Dvořák K, Ročňáková I, Yan S, et al. Design of tailored biodegradable implants: The effect of voltage on electrodeposited calcium phosphate coatings on pure magnesium. Journal of the American Ceramic Society. 2019;102(1):123-35. DOI: 10.1111/jace.15888

Nie W, Gao Y, McCoul DJ, Gillispie GJ, Zhang Y, Liang L, et al. Rapid mineralization of hierarchical poly(l-lactic acid)/poly(epsilon-caprolactone) nanofibrous scaffolds by electrodeposition for bone regeneration. Int J Nanomedicine. 2019;14:3929-41. DOI: 10.2147/ijn.s205194

Durairaj RB, Ramachandran S. In Vitro Characterization of Electrodeposited Hydroxyapatite Coatings on Titanium (Ti6AL4V) and Magnesium (AZ31) Alloys for Biomedical Application. International Journal of Electrochemical Science. 2018;13:4841-54. DOI: 10.20964/2018.05.85

Zhitomirsky D, Roether JA, Boccaccini AR, Zhitomirsky I. Electrophoretic deposition of bioactive glass/polymer composite coatings with and without HA nanoparticle inclusions for biomedical applications. Journal of Materials Processing Technology. 2009;209(4):1853-60. DOI: 10.1016/j.jmatprotec.2008.04.034

Cheong M, Zhitomirsky I. Electrodeposition of alginic acid and composite films. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 2008;328(1-3):73-78. DOI: 10.1016/j.colsurfa.2008.06.019

Maniglio D, Bonani W, Bortoluzzi G, Servoli E, Motta A, Migliaresi C. Electrodeposition of Silk Fibroin on Metal Substrates. Journal of Bioactive and Compatible Polymers. 2010;25(5):441-54. DOI: 10.1177/0883911510374384

Mochales C, Frank S, Zehbe R, Traykova T, Fleckenstein C, Maerten A, et al. Tetragonal and cubic zirconia multilayered ceramic constructs created by EPD. J Phys Chem B. 2013;117(6):1694-701. DOI: 10.1021/jp3064432

Hekmatfar M, Moshayedi S, Ghaffari SA, Rezaei HR, Golestani-Fard F. Fabrication of HAp-8YSZ composite layer on Ti/TiO2 nanoporous substrate by EPD/MAO method. Materials Letters. 2011;65(23-24):3421-23. DOI: 10.1016/j.matlet.2011.07.048

Qi H, Heise S, Zhou J, Schuhladen K, Yang Y, Cui N, et al. Electrophoretic Deposition of Bioadaptive Drug Delivery Coatings on Magnesium Alloy for Bone Repair. ACS Appl Mater Interfaces. 2019;11(8):8625-34. DOI: 10.1021/acsami.9b01227

Watanabe J, Akashi M. Novel biomineralization for hydrogels: electrophoresis approach accelerates hydroxyapatite formation in hydrogels. Biomacromolecules. 2006;7(11):3008-11. DOI: 10.1021/bm060488h

Watanabe J, Akashi M. An Electrophoretic Approach Provides Tunable Mineralization Inside Agarose Gels. Crystal Growth & Design. 2008;8(2):478-82. DOI: 10.1021/cg0703487

Kimura K, Kamitakahara M, Yokoi T, Ioku K. Formation Process of Hydroxyapatite Granules in Agarose Hydrogel by Electrophoresis. Crystal Growth & Design. 2018;18(4):1961-66. DOI: 10.1021/acs.cgd.7b01154

Neves NM. Electrospinning for Advanced Biomedical Applications and Therapies. Shawbury, United Kingdom: Smithers Rapra Technology Ltd; 2012.

Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, et al. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Progress in Polymer Science. 2014;39(5):862-90. DOI: 10.1016/j.progpolymsci.2013.06.002

Duque-Sánchez LM, Rodriguez L, López M. Electrospinning: la era de las nanofibras. Revista Iberoamericana de Polímeros. 2013 [acceso: 18/07/2021]; 14(1):10-27. Disponible en: https://reviberpol.files.wordpress.com/2019/07/2013-duque.pdf

Arinstein A. Electrospun Polymer Nanofibers. Singapore: Pan Stanford Publishing Pte. Ltd.; 2018.

Kny E, Ghosal K, Thomas S. Electrospinning: From Basic Research to Commercialization: Royal Society of Chemistry; 2018.

Lyu S, Huang C, Yang H, Zhang X. Electrospun fibers as a scaffolding platform for bone tissue repair. J Orthop Res. 2013;31(9):1382-9. DOI: 10.1002/jor.22367

Lao L, Wang Y, Zhu Y, Zhang Y, Gao C. Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J Mater Sci Mater Med 2011;22(8):1873-84. DOI: 10.1007/s10856-011-4374-8

Lamastra FR, Bianco A, Meriggi A, Montesperelli G, Nanni F, Gusmano G. Nanohybrid PVA/ZrO2 and PVA/Al2O3 electrospun mats. Chemical Engineering Journal. 2008;145(1):169-75. DOI: 10.1016/j.cej.2008.07.048

Pattanashetti N, Hiremath C, Naik S, Heggannavar G, Kariduraganavar M. Development of Nanofibrous Scaffolds by Varying TiO2 Content in Crosslinked PVA for Bone Tissue Engineering. New Journal of Chemistry. 2020;44. DOI: 10.1039/C9NJ05118J

Shao W, He J, Han Q, Sang F, Wang Q, Chen L, et al. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering. Materials Science and Engineering: C. 2016;67:599-610. DOI: 10.1016/j.msec.2016.05.081

Shin SH, Purevdorj O, Castano O, Planell JA, Kim HW. A short review: Recent advances in electrospinning for bone tissue regeneration. J Tissue Eng. 2012;3(1):1-10. DOI: 10.1177/2041731412443530

Kandušer M, Miklavčič D. Electroporation in Biological Cell and Tissue: An Overview. In: Vorobiev E, Lebovka N, editors. Electrotechnologies for Extraction from Food Plants and Biomaterials. New York: Springer; 2009. p. 1-37.

Correa NM, Schelly ZA. Dynamics of Electroporation of Synthetic Liposomes Studied Using a Pore-Mediated Reaction, Ag+ + Br- → AgBr. The Journal of Physical Chemistry B. 1998;102(46):9319-22. DOI: 10.1021/jp9823648

Retelj L, Pucihar G, Miklavcic D. Electroporation of intracellular liposomes using nanosecond electric pulses--a theoretical study. IEEE Trans Biomed Eng. 2013;60(9):2624-35. DOI: 10.1109/tbme.2013.2262177

Denzi A, della Valle E, Apollonio F, Breton M, Mir L, Liberti M. Exploring the Applicability of Nano-Poration for Remote Control in Smart Drug Delivery Systems. The Journal of Membrane Biology. 2016;250. DOI: 10.1007/s00232-016-9922-1

Denzi A, della Valle E, Esposito G, Mir LM, Apollonio F, Liberti M. Technological and Theoretical Aspects for Testing Electroporation on Liposomes. BioMed research international 2017;2017. DOI: 10.1155/2017/5092704

Meng Lin M, Kim HH, Kim H, Muhammed M, Kyung Kim D. Iron oxide-based nanomagnets in nanomedicine: fabrication and applications. Nano Rev 2010;1:4883. DOI: 10.3402/nano.v1i0.4883

Cardoso VF, Francesko A, Ribeiro C, Banobre-Lopez M, Martins P, Lanceros-Mendez S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv Healthc Mater. 2018;7(5). DOI: 10.1002/adhm.201700845

Mohammed L, Gomaa HG, Ragab D, Zhu J. Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology. 2017;30:1-14. DOI: 10.1016/j.partic.2016.06.001

Shimizu K, Ito A, Honda H. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering. Journal of Bioscience and Bioengineering. 2007;104(3):171-77. DOI: 10.1263/jbb.104.171

Shimizu K, Ito A, Yoshida T, Yamada Y, Ueda M, Honda H. Bone Tissue Engineering

With Human Mesenchymal Stem Cell Sheets Constructed Using Magnetite

Nanoparticles and Magnetic Force. Journal of Biomedical Materials Research Part

B: Applied Biomaterials. 2007;82B(2):471-80. DOI: 10.1002/jbm.b.30752

Oshima S, Ishikawa M, Mochizuki Y, Kobayashi T, Yasunaga Y, Ochi M. Enhancement of bone formation in an experimental bony defect using ferumoxide-labelled mesenchymal stromal cells and a magnetic targeting system. J Bone Joint Surg Br.

;92(11):1606-13. DOI: 10.1302/0301-620x.92b11.23491

Jasmin, Torres AL, Nunes HM, Passipieri JA, Jelicks LA, Gasparetto EL, et al. Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging. Journal of Nanobiotechnology. 2011;9:4. DOI: 10.1186/1477-3155-9-4

Luciani N, Du V, Gazeau F, Richert A, Letourneur D, Le Visage C, et al. Successful chondrogenesis within scaffolds, using magnetic stem cell confinement and bioreactor maturation. Acta Biomaterialia. 2016;37:101-10. DOI:

1016/j.actbio.2016.04.009

Bock N, Riminucci A, Dionigi C, Russo A, Tampieri A, Landi E, et al. A novel route in bone tissue engineering: Magnetic biomimetic scaffolds. Acta Biomaterialia.

;6(3):786-96. DOI: 10.1016/j.actbio.2009.09.017

Madroñero de la Cal A. Utilización terapéutica de los campos magnéticos. I: Fundamentos del biomagnetismo. Patología del Aparato Locomotor. 2004 [acceso: 18/07/2021]; 2(1):22-37. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=1010648&orden=27516&info=link

Behrens SB, Deren ME, Monchik KO. A review of bone growth stimulation for fracture treatment. Current Orthopaedic Practice. 2013;24(1):84-91. DOI: 10.1097/BCO.0b013e3182793faa

Brighton CT, Wang W, Seldes R, Zhang G, Pollack SR. Signal transduction in electrically stimulated bone cells. The Journal of bone and joint surgery. American Volume. 2001;83-A(10):1514-23. DOI: 10.2106/00004623-200110000-00009

Miller SL, Coughlin DG, Waldorff EI, Ryaby JT, Lotz JC. Pulsed electromagnetic field (PEMF) treatment reduces expression of genes associated with disc degeneration in human intervertebral disc cells. The Spine Journal. 2016;16(6):770-76. DOI: 10.1016/j.spinee.2016.01.003

Hart S, Bucio R, Dapino M. Magnetostrictive Actuation of a Bone Loading Composite for Accelerated Tissue Formation. Smart Materials Research. 2012;2012:1-7. DOI: 10.1155/2012/258638

Malheiro VN, Spear RL, Brooks RA, Markaki AE. Osteoblast and monocyte responses to 444 ferritic stainless steel intended for a Magneto-Mechanically Actuated Fibrous Scaffold. Biomaterials. 2011;32(29):6883-92. DOI: 10.1016/j.biomaterials.2011.06.002

Sapir-Lekhovitser Y, Rotenberg MY, Jopp J, Friedman G, Polyak B, Cohen S. Magnetically actuated tissue engineered scaffold: insights into mechanism of physical stimulation. Nanoscale. 2016;8(6):3386-99. DOI: 10.1039/c5nr05500h

Chiarelli P, De Rossi D. Polyelectrolyte Intelligent Gels: Design and Applications. In: Ciferri A, Perico A, editors. Ionic Interactions in Natural and Synthetic Macromolecules. Hoboken, N.J., USA: John Wiley & Sons, Inc.; 2012. p. 581-620.

Otake M. Electroactive Polymer Gel Robots: Modelling and Control of Artificial Muscles. Heidelberg: Springer-Verlag Berlin; 2010.



Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.