General aspects about the structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

Francisco Sotomayor Lugo, José Miguel Corbacho Padilla, Ana Margarita Valiente Linares, Yudelkis Benítez Cordero, Tatiana Viera González

Texto completo:

PDF (English) XML (English)

Resumen

Introduction: In late 2019, a new coronavirus named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that causes respiratory-related illness was reported in Wuhan, China. This virus can attack human lung cells causing a disease called coronavirus disease 2019 (COVID-19), which can lead to pneumonia and acute respiratory distress syndrome.

Objective: Describe the structural characteristics of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).

Methods: A review was written from 47 bibliographic references. Articles and information from national and international journals available in the PubMed, Scopus, Medline, and SciELO databases were used. The quality, reliability and validity of the selected articles were analyzed to carry out an adequate review. Analysissynthesis and logical deduction methods were applied.

Development: An introduction to the general aspects of the structure of SARS-CoV-2 is provided by stating the characteristics of the structural and non-structural proteins encoded by the viral genome, which provides the basis for understanding viral entry mechanisms to the host cell, and may be useful to stimulate the search for novel insights and possible therapeutic targets to fight the infection.

Conclusions: Knowledge of the structure of the SARS-CoV-2 virus and the characteristics of the structural and non-structural proteins provides the basis for understanding the viral mechanisms of infection and the strategies for developing effective therapeutics.

Palabras clave

Coronavirus Infections; Severe Acute Respiratory Syndrome Coronavirus 2; SARS-CoV-2; Viral Structure; Viral Genome

Referencias

Zhong NS, Zheng BJ, Li YM, Xie ZH, Chan KH, Li PH, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. The Lancet 2003;362(9393):1353-8. DOI: 10.1016/s0140-6736(03)14630-2

Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, Van Amerongen G, van Riel D, et al. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. The Lancet 2003;362(9380):263-70. DOI: 10.1016/S0140-6736(03)13967-0

Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine 2012;367(19):1814-20. DOI: 10.1056/NEJMoa1211721

Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L, Xu T, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chinese Medical Journal 2020;133(9): 1015–1024. DOI: 10.1097/CM9.0000000000000722

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine 2020;382(8):727-733. Available in: 10.1056/NEJMoa2001017

Monchatre-Leroy E, Boué F, Boucher JM, Renault C, Moutou F, Gouilh MA, et al. Identification of Alpha and Beta Coronavirus in Wildlife Species in France: Bats, Rodents, Rabbits and Hedgehogs. Viruses 2017;9(12):364. DOI: 10.3390/v9120364

of the International CSG. The species Severe acute respiratory syndrome related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology 2020;1. DOI: 10.1038/s41564-020-0695-z

Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020;368(6489):409-12. DOI: 10.1126/science.abb3405

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020;180:281-92. DOI: 10.1016/j.cell.2020.02.058

Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 2015;1282:1-23. DOI: 10.1007/978-1-4939-2438-7_1

Siddell S, Wege H, Ter Meulen V. The Biology of Coronaviruses. Journal of General Virology 1983;64(4):761-77. DOI: 10.1099/0022-1317-64-4-761

Su S, Wong G, Shi W, Liu J, Lai AC, Zhou J, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in microbiology 2016;24(6):490-502. DOI: 10.1016/j.tim.2016.03.003

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet 2020;395(10224):565-74. DOI: 10.1016/S0140-6736(20)30251-8

Masters PS. The molecular biology of coronaviruses. Advances in virus research 2006;66:193-292. DOI: 10.1016/S0065-3527(06)66005-3

Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of Medical Virology 2020;92(4):418-23. DOI: 10.1002/jmv.25681

Sun L, Xing Y, Chen X, Zheng Y, Yang Y, Nichols DB, et al. Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PloS One 2012;7(2). DOI: 10.1371/journal.pone.0030802

Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science 2003;300(5626):1763-7. DOI: 10.1126/science.1085658

Lokugamage KG, Narayanan K, Huang C, Makino S. Severe acute respiratory syndrome coronavirus protein nsp1 is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation. Journal of Virology 2012;86(24):13598-608. DOI: 10.1128/JVI.01958-12

Astuti I. Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV-2): An overview of viral structure and host response. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2020;14(4):407–412. DOI: 10.1016/j.dsx.2020.04.020

Clementz MA, Kanjanahaluethai A, O’Brien TE, Baker SC. Mutation in murine coronavirus replication protein nsp4 alters assembly of double membrane vesicles. Virology 2008;375(1):118-29. DOI: 10.1016/j.virol.2008.01.018

Oostra M, Hagemeijer MC, van Gent M, Bekker CP, te Lintelo EG, Rottier PJ, et al. Topology and membrane anchoring of the coronavirus replication complex: Not all hydrophobic domains of nsp3 and nsp6 are membrane spanning. Journal of Virology 2008;82(24):12392-405. DOI: 10.1128/JVI.01219-08

Deming DJ, Graham RL, Denison MR, Baric RS. Processing of open reading frame 1a replicase proteins nsp7 to nsp10 in murine hepatitis virus strain A59 replication. Journal of Virology 2007;81(19):10280-91. DOI: 10.1128/JVI.00017-07

Perlman S, Netland J. Coronaviruses post-SARS: update on Coronaviruses post-SARS: update on. Nature Reviews Microbiology 2009;7(6):439-50. DOI: 10.1038/nrmicro2147

Kindler E, Thiel V, Weber F. Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response. Advances in Virus Research 2016;96:219-43. DOI: 10.1016/bs.aivir.2016.08.006

Chen Y, Cai H, Xiang N, Tien P, Ahola T, Guo D. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proceedings of the National Academy of Sciences 2009;106(9):3484-9. DOI: 10.1073/pnas.0808790106

Menachery VD, Yount BL, Josset L, Gralinski LE, Scobey T, Agnihothram S, et al. Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2′-O-methyltransferase activity. Journal of Virology 2014;88(8):4251-64. DOI: 10.1128/JVI.03571-13

Wen F, Yu H, Guo J, Li Y, Luo K. Identification of the hyper-variable genomic hotspot for the novel coronavirus SARS-CoV-2. Journal of Infection 2020;11:27. DOI: 10.1016/j.jinf.2020.02.027

Tan J, Verschueren KH, Anand K, Shen J, Yang M, Xu Y, et al. Hilgenfeld, pH-dependent conformational flexibility of the SARS-CoV main proteinase (Mpro) dimer: Molecular dynamics simulations and multiple X-ray structure analyses. Journal of molecular biology 2005;354(1):25-40. DOI: 10.1016/j.jmb.2005.09.012

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG. A new coronavirus associated with human respiratory disease in China. Nature 2020;579(7798):265-9. DOI: 10.1038/s41586-020-2008-3

Letko M , Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature microbiology 2020;5(4),562-9. DOI: 10.1038/s41564-020-0688-y

Alsaadi EA, Jones IM. Membrane binding proteins of coronaviruses. Future Virology 2019;14(4):275-86. DOI: 10.2217/fvl-2018-0144

Bianchi M, Benvenuto D, Giovanetti M, Angeletti S, Ciccozzi M, Pascarella S. Sars-CoV-2 Envelope and Membrane proteins: differences from closely related proteins linked to cross-species transmission? Preprints 2020;2020040089. DOI: 10.20944/preprints202004.0089.v1

Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nature reviews Microbiology 2019;17(3):181-92. DOI: 10.1038/s41579-018-0118-9

Srinivasan S, Cui H, Gao Z, Liu M, Lu S, Mkandawire W, et al. Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional Regions of Viral Proteins. Viruses 2020; 12(4):360. DOI: 10.3390/v12040360

Lu X, Pan J, Tao J, Guo D. SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 2011;42(1):37-45. DOI: 10.1007/s11262-010-0544-x

Cui L, Wang H, Ji Y, Yang J, Xu S, Huang X, et al. The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells. Journal of Virology 2015;89(17):9029-43. DOI: 10.1128/JVI.01331-15

Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virology Journal 2019;16(1):69. DOI: 10.1186/s12985-019-1182-0

Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications 2020;11(1):1-12. DOI: 10.1038/s41467-020-15562-9

Bosch BJ, van der Zee R, de Haan, CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. Journal of Virology 2003;77(16):8801-11. DOI: 10.1128/JVI.77.16.8801-8811.2003

Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367 (6483):1260-1263. DOI: http://science.sciencemag.org/content/367/6483/1260

Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis 2020. DOI: 10.1016/j.jpha.2020.03.001.

Qiu Y, Zhao YB, Wang Q, Li JY, Zhou ZJ, Liao CH. Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2. Microbes and Infection 2020;22(4): 221–225. DOI: 10.1016/j.micinf.2020.03.003

Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020;46:586–590. DOI: 10.1007/s00134-020-05985-9

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020;581:215–220. DOI: 10.1038/s41586-020-2180-5

Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367(6485):1444-8. Available at: http://science.sciencemag.org/content/367/6485/1444

Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, et al. Characterization of the receptor-binding domain (RBD) of protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology 2020;17:613–620. DOI: 10.1038/s41423-020-0400-4

Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pacific Journal of Allergy and Immunology 2020;38(1):1-9. DOI: 10.12932/AP-200220-0772



Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.